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More than 40 years after the collapse of the fishery for Pacific sardine, a renewed fishery has emerged off the west coasts of the United
States and Canada. The daily egg production method (DEPM) and acoustic-trawl surveys are performed annually and, to minimize the
uncertainties in the estimates, sampling effort needs to be allocated optimally. Here, based on a 12-year dataset including the pres-
ence/absence of sardine eggs and concomitant remotely sensed oceanographic variables, a probabilistic generalized additive model is
developed to predict spatio-temporal distributions of habitat for the northern stock of Pacific sardine in the California Current.
Significant relationships are identified between eggs and sea surface temperature, chlorophyll a concentration, and the gradient of
sea surface altitude. The model accurately predicts the habitat and seasonal migration pattern of sardine, irrespective of spawning
condition. The predictions of potential habitat are validated extensively by fishery landings and net-sample data from the northeast
Pacific. The predicted habitat can be used to optimize the time and location of the DEPM, acoustic-trawl, and aerial surveys of sardine.
The method developed and illustrated may be applicable too to studies of other stocks of sardine and other epipelagic fish in other
eastern boundary, upwelling regions.
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Introduction
The Pacific sardine (Sardinops sagax) is a coastal pelagic species
found along the northeastern Pacific margin, from the Gulf of
California to the Gulf of Alaska. In the 1930s, its fishery in the
California Current (CC) was the largest single-species one in the
western hemisphere, but it collapsed in the 1950s following a dra-
matic and partly unexplained decrease in biomass (Radovich,
1982). In the 1990s, after several successive years of increasing
biomass (Smith and Moser, 2003), the Pacific sardine fishery
resumed in the CC off the United States and Canada (Figure 1).
The US Pacific sardine fishery is currently regulated by the
Pacific Fishery Management Council (PFMC), which sets harvest
guidelines based on annual US assessments of the northern or
cold stock of Pacific sardine, hereafter sardine. The assessments
were traditionally based on catch-at-age information and
fishery-independent estimates of biomass provided by daily egg
production method (DEPM) surveys and, more recently, from
aerial surveys (Hill et al., 2009). Motivated by differing infor-
mation from these various sources, the PFMC requested that
data from fishery-independent surveys using combined echosoun-
der and trawl sampling (acoustic-trawl surveys) be included in
future assessments (Hill et al., 2006). Planning effective assessment
surveys requires the judicious selection of survey timing, area, and
effort to maximize the likelihood of (i) sampling the entire

northern stock, and (ii) providing the estimates of sardine abun-
dance, with low sampling variance. These two goals compete in
the use of limited ship and aircraft time, and the balance needs
to be optimized systematically.

As stated above, this study focuses solely on the northern stock
of sardine (Smith, 2005), which exhibits large seasonal movements
within the CC out to �300 nautical miles (hereafter miles) off-
shore (Macewicz and Abramenkoff, 1993) between northern
Baja California, Mexico, and Canada (Figure 1; Clark and
Janssen, 1945), apparently following habitat characterized by a
specific range of seawater temperature (Lluch-Belda et al., 1991;
Ware, 1999; Lo et al., 2007) and primary production (Reiss
et al., 2008). In spring, sardine concentrate off central and
southern California for their primary spawning season (Clark
and Janssen, 1945). As the season progresses and sea surface temp-
erature (SST) increases, adult sardine migrate north and inshore
(McClatchie, 2009). There is also sporadic spawning during late
spring and summer off Oregon and Washington (Emmett et al.,
2005), and occasionally off Canada (McFarlane et al., 2005).
Sardine aggregate off southern Vancouver Island, British
Columbia (BC), Canada, in summer (Ware, 1999). In winter,
the greater part of the northern sardine stock retreats south, con-
centrating again off southern California for the next spring
spawning.
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Most of what is known about sardine movements along the
northeastern Pacific margin dates back to the 1940s, before the col-
lapse of the fishery, and is derived from the fishery itself and
large-scale tagging studies (Clark and Janssen, 1945). At that
time, sardine were harvested in the CC from Baja California to
BC. Recent information on sardine migration is limited to the
time and area of spring spawning (Lo et al., 2007), and when
and where the fishery is carried out in summer (Figure 1;
Emmett et al., 2005; McFarlane et al., 2005). Nevertheless, the
early observed pattern of sardine migration appears to persist,
perhaps predictably. A model to predict the spatio-temporal distri-
bution of sardine off the entire west coast of the United States
throughout the year would be extremely valuable in helping
direct and optimize survey activities.

Many studies have concluded that sardine tend to inhabit
waters within restricted ranges of temperature. During spring,
sardine from the northern stock spawn off southern California
and Baja California in waters of 12–168C (Checkley et al., 2000;

Lynn, 2003; Jacobson et al., 2005; Reiss et al., 2008), generally
around 138C (Reiss et al., 2008; Weber and McClatchie, 2010).
To the north, sardine generally appear during summer and gener-
ally avoid water ,128C (Schweigert and McFarlane, 2001). When
there is spawning there, it is associated with temperatures similar
to those observed during spring off southern California (Emmett
et al., 2005). These findings support a hypothesis that the northern
stock of Pacific sardine move within a restricted and likely ident-
ifiable habitat, probably defined by a combination of favourable
water temperature and feeding opportunities, perhaps proxies
for other biophysical forcing functions.

Satellite-sensed and vessel-sampled oceanographic conditions
have been used to adapt survey effort in real time (Checkley
et al., 2000). However, a habitat model based on remotely
sensed information alone has not been developed, tested exten-
sively, or used operationally. Here, using more than a decade of
observations, a model is developed to characterize the relation-
ships between sardine occurrence and the epipelagic environment.
The model is used to predict spatio-temporal variations in the
habitat of the northern stock of Pacific sardine and to predict
their seasonal migrations in the CC. Such predictions, future
and retrospective, will serve to reduce both random and systematic
components of error in the survey estimates of sardine distribution
and abundance, and hence potentially improve management. They
will also enhance the general knowledge of the dynamics and inter-
actions of sardine, their prey, and their predators, including
fishers.

Methods
Data collection
From 1998 through 2009, distributions and densities of sardine
eggs were estimated from spring (generally April) surveys con-
ducted for the DEPM (Hill et al., 2009, and references therein).
These surveys targeted the spring spawning area in southern and
central Californian waters, mostly between 30 and 378N and 117
and 1268W (Figure 1). However, the sampling design changed
from year to year and extended farther north in some years,
occasionally using two vessels within a constrained period,
usually less than a month. In 2006 and 2008, for example, the
surveys spanned the entire west coast of North America, from
the US–Mexico border to BC (Figure 2).

During DEPM surveys, eggs are collected with a continuous,
underway fish–egg sampler (CUFES; Checkley et al., 2000),
which pumps water from a depth of 3 m and collects the plankton
in a sieve of 200-mm mesh. The mean CUFES sampling interval
(CSI) was 30 min, corresponding to 5–6 miles at a ship’s speed
of 10–12 knots. In areas of abundant sardine eggs, accounting
for 20% of the samples, the CSI was ,20 min. Individual fish
eggs were visually classified to species and counted. CUFES
samples were spatially indexed by their central geographic
positions.

Satellite data were retrieved from the CoastWatch repository
(http://coastwatch.pfeg.noaa.gov;/coastwatch/CWBrowser.jsp
and /erddap/griddap/index.html) in monthly, 14-d, and 7-d
composite images. These were used alone, for monthly images,
or in combination when using 14- or 7-d images, to maximize
the temporal match between remotely sensed variables and the
CUFES data.

SSTs (8C) are from the Pathfinder V5.0 sensor (day and night
images; 4.4 km resolution) for the period 1998–2008 and from

Figure 1. The CC region, indicating typical locations of
spring-spawning sardine, the summer fishery off Oregon,
Washington, and Vancouver Island, and the year-round fishery off
northern Baja California and California.
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the blended-sea-surface product (weighted mean of several plat-
forms, 0.18 resolution) for 2009. Sea surface concentrations of
chlorophyll a (CHL; mg m23) were obtained from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS; 0.041678 resol-
ution) for the period 1998–2002 and from the AquaModis NPP
(0.058 resolution) for the period 2003–2009. Sea surface altitude
deviation (ALT; m) were obtained from the Archiving,
Validation, and Interpretation of Satellite Oceanographic

(AVISO; 0.258 resolution) data archive and used to construct
maps of sea-surface-height gradients (GRAD; m grid_spacing21),
i.e. the maximum rate of change in ALT estimated from a 3 × 3 cell
moving plane. This is the minimum sampling neighbourhood
required to estimate an isotropic gradient with a resolution com-
parable with that of CUFES samples.

To match the egg and the environmental data spatially, SST and
CHL values within 2 miles of each CUFES sample were averaged

Figure 2. Sardine egg presence (crosses) and absence (dots), sampled by a CUFES. The underlying contour maps show satellite-sensed SST for
each spring survey, 1998–2009.
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arithmetically. Owing to their lower resolution, ALT and GRAD
values within 7.7 miles of each CUFES sample were averaged. All
analyses were performed in R V2.10 (R Development Core
Team, 2009; see Supplementary material).

Data analysis
A habitat model, following the terminology in Guisan and
Zimmermann (2000), was constructed by regressing the presence
of sardine eggs on SST, CHL, ALT, and GRAD. As sardine eggs
have limited longevity (ca. 3 d at 158C; Lasker, 1964), their pres-
ence or absence in the CUFES samples, coded 1 or 0, respectively,
were used to identify the environmental conditions where spawn-
ing was more frequent. When fitted to a large set of spatially and
temporally independent observations of their environment, the
model probabilities define the potential habitat of spawning
sardine from the northern stock. Peak spawning of sardine off
southern California is in April, with ca. 12% of all mature
female sardine spawning each day (Hill et al., 2009). Assuming
that the daily proportion of spawning mature females does not
exhibit mesoscale (tens to hundreds of kilometres) segregation
from the mature post-spawning or recovering fish, i.e. between
two spawning events during the same season, the potential
habitat of spawning sardine may also be representative of the
potential habitat of the greater population of mature sardine.
Therefore, the model should also predict the geographic limits
of the habitat against time for the entire northern stock of adult
sardine in the CC, here restricted to 30–508N.

The associations between satellite-sensed environmental vari-
ables and sardine eggs in CUFES samples were estimated by gen-
eralized additive models (GAMs; Wood, 2006). GAMs are a
generalization of ordinary linear models, and the linear predictors
are related to the response variables via a link function that extends
the use of the regression models beyond non-Gaussian response
variables. GAMs use data-driven functions, such as splines and
local regression, which have superior performance relative to the
polynomial functions used in linear models. They allow the depic-
tion of complex relationships between species and their environ-
ment, such as those representing species habitats (Guisan and
Zimmermann, 2000).

Alternative GAMs were fitted using SST, ln(CHL), GRAD, CSI,
and egg presence/absence, a binomial error-distribution, and a
logit-link function (mgcv package in R, V1.6.1; Wood, 2006).
CHL data were ln-transformed to reduce skew. Single smoothers
were fitted using the default spline basis. Interactions between
the predictors were fitted using tensor-product smooth functions.
These techniques allowed the fitting of variables measured at
different scales within the same smoother (Wood, 2006). Model
selection was performed using both forward and backward
inclusions of variables (see guidelines in Wood and Augustin,
2002, and Wood, 2006). This selection process includes the
approximate p-values of the smoothers, the statistics representing
the compromise between quality-of-fit and complexity of the
models, e.g. the generalized cross-validation score or Akaike infor-
mation criterion (AIC), and visual inspection of the smoothers. As
it is not possible to use the per cent of deviance explained in binary
models (McCullagh and Nelder, 1997), the area under the receiver
operating characteristic (ROC) curve (AUC) was used as a
measure of global fit. For a random pair of presence and absence
samples, the AUC statistic represents the probability that the
model fits a higher probability to the presence sample (Fawcett,
2006). An AUC value of 1 indicates a model with optimal

prediction ability, i.e. a model able to distinguish between all
zeroes and values of 1, whereas a value of 0.5 represents a model
that predicts no better than randomly.

Habitat models of the pelagic environment evaluate relation-
ships of a presumed temporarily and spatially invariant process,
so cannot include temporal or spatial explanatory variables.
Moreover, because the models are based on relationships observed
with data from surveys with different sample sizes, the explanatory
power of a model must be checked for consistency throughout the
surveys, to ensure that one or a small number of surveys does not
dominate the relationships. Using a common model, i.e. a single
model fit with all data, the annual AUC values provide such diag-
nostics. Large and consistent AUC values suggest a model with
accurate and time-invariant prediction capabilities. Ultimately,
the habitat model was tested for prediction power through an
iterative process that excluded from model fitting one survey at
a time and used it as a testing set. The mean predictive AUC
values and their coefficients of variation (CVs) arising from this
iterative process were used as additional criteria in the evaluation
of the candidate models. Density-dependent effects on the habitat
selection were tested by (i) including the estimated spawning-stock
biomass (SSB; Hill et al., 2009) as a term in the model, and (ii)
evaluating the correlation between AUC and SSB in models in
which SSB was not included as a predictor. Either significance in
the SSB term or a negative correlation between AUC and SSB
would indicate that an increase in stock biomass might expand a
species’ distribution beyond optimal habitat (MacCall, 2009).

CUFES data continuously recorded along transects may be
autocorrelated because of the aggregating behaviour of spawning
sardine. Autocorrelation in the response variable could cause posi-
tive bias in the perceived explanatory power of a model
(Diniz-Filho et al., 2003), and hence an overstatement of a
model’s prediction abilities. To mitigate this potential effect, the
analysis included every other CUFES sample. This decimation
resulted in a sample separation of at least 10 miles, a distance
greater than the correlation dimension of fish schools and
sardine–egg patches in the CC (Smith, 1978; Curtis, 2004) and
in other eastern boundary current ecosystems (e.g. Zwolinski
et al., 2006). Finally, to exclude the possibility of fitting a model
for which the explanatory power arises from the presence of
spatial correlation in the data rather than from a true
distribution-to-environment relationship (Diniz-Filho et al.,
2003), as well as to evaluate the lack of important explanatory vari-
ables (Barry and Elith, 2006), the models’ residuals were tested for
autocorrelation using variography (Chilès and Delfiner, 1999).

The utility of the habitat model for predicting sardine distri-
bution and hence optimizing sampling in acoustic and egg
surveys was explored by analysing the shape of the ROC (Hanley
and McNeil, 1982; verification package in R, V 1.31). For a
binary classifier, a ROC curve is a plot of the model’s sensitivity
(the proportion of positive outcomes whose fitted probabilities
are above a certain discriminant threshold: true positives) vs. the
model’s 1-specificity (the proportion of negative outcomes
below the same discriminant threshold: true negatives). A model
allows total separation between classes if the fitted probabilities
for all positive samples are greater than the probabilities of all
the negative samples. In other words, there is at least one prob-
ability threshold that indicates a sensitivity of 1 and a 1-specificity
of 0.

Four isolevels of habitat probabilities, in decreasing order, were
chosen based on the selected GAM, with all years included. These
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potential habitat classes include: optimal, greatest probabilities,
including 80% of positive samples; good, including 10% of the
total positive samples not included in the optimal habitat; bad,
including 9% of the total positive samples not included in the
optimal and good habitat; and unsuitable, including 1% of the
total positive samples not included in the other classes. These
classes identify regions of sardine habitat both retrospectively,
for evaluation of existing data, and prognostically, for optimizing
future sampling effort.

Using the best GAM and monthly averages of the satellite-
sensed environmental variables, sardine habitat was predicted
monthly from 1998 through 2009 from northern Baja California
to southern Vancouver Island, revealing its spatio-temporal
dynamics forced by mesoscale oceanic circulation. These predic-
tions of sardine habitat were then compared with independent
observations of sardine abundance, including data from net
samples taken near the Columbia River and commercial landings
from the fisheries off Oregon, Washington, and Vancouver Island,
more than 1000 km north of the spawning area off southern
California (Figure 1). Further, the coherence between the fisheries
and the predicted habitat was tested by spectral analysis of their
time-series from 2000 through 2009.

Results
Positive egg samples were contiguously distributed (Figure 2) and
more frequent in areas with SST values of 11.5–15.58C and CHL
values of 0.18–3.2 mg m23 (Figure 3). Higher rates of egg encoun-
ters with higher ALT and GRAD values were also observed,
although less clearly (Figure 3). Low SST (,11.58C) in conjunc-
tion with high CHL (.3.2 mg m23) is indicative of freshly
upwelled water and defines the inshore limit of sardine eggs.
Offshore, the presence of eggs is bounded by oceanic water,
which is warmer (typically .15.58C) and low in CHL
(,0.18 mg m23).

There were significant relationships between egg presence and
each of the environmental variables, but the relationships with
SST and ln(CHL) were considerably stronger than those with
ALT and GRAD (see Supplementary material). Also, models con-
sisting of combinations of the explanatory variables were more sig-
nificant, leading to a final model derived from a combination of
SST, ln(CHL), GRAD, and CSI:

ln
p̂

1 − p̂

( )
= te(SST, ln(CHL)) + te(GRAD, ln(CHL)) + s(CSI),

(1)

where p̂ is the fitted probability, and te and s represent, respect-
ively, a tensor-product smoother and a single-dimensional
smoother, both using the default thin-plate basis available in the
mgcv package (see Supplementary material). The selected model
had an average explanatory AUC of 0.83, a maximum of 0.91 for
the 2008 survey, and a minimum of 0.69 in 2006 (Table 1). The
semivariograms of this model’s residuals showed little, if any,
spatial structure (results not shown).

The predictions from the sequential models, i.e. models using
all data except the surveys used for validation, consistently pro-
vided AUC values .0.5 and with high statistical significance
(Table 1). The maximum and the minimum AUC values were
0.88 in 2008 and 0.62 in 2006, respectively. There were no indi-
cations of density-dependent effects in habitat selection, because
the SSB term was non-significant when included in the model,
and the AUC and SSB values were not significantly correlated
(results not shown). These results suggest that the model, as
described in Equation (1), captured significant and temporally
invariant relationships between spring-spawning sardine and
their habitat. The selected model fitted a maximum probability
of sardine presence at approximately SST ¼ 13.28C,

Figure 3. Empirical probability density functions for CUFES samples with (dashed line) and without (continuous line) sardine eggs plotted
against satellite-sensed (a) SST, (b) ln(CHL), (c) ALT, and (d) GRAD. The y-axis labels in (b) are linear.
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ln(CHL) ¼ 20.7 (CHL ¼ 0.5 mg m23), and GRAD .

0.05 m grid_spacing21 (Figure 4).
Examination of the ROC curve for the global model [Equation

(1)] resulted in probability thresholds of 0.05, 0.32, and 0.45 for
delimiting the lower boundaries of the bad, good, and optimal
habitats, respectively (Figure 5). Using these limits, possible
reduction in survey effort was evaluated for each CUFES survey.
If the sampling area was chosen conservatively to exclude unsuita-
ble habitat, an average of 13% of the original sampling effort could
have been reallocated while still sampling .99% of all the eggs
originally sampled. If sampling was restricted to good and
optimal habitat, 92% of the eggs could be sampled, saving 36%
of the total original survey effort, on average. In some cases, the
saved effort could exceed 50% of total survey time (see
Supplementary material). These gains reflect the model’s power
to predict the inshore, southern, and offshore limits of sardine
habitat accurately (Figure 6). In many years, the model indicated
that sardine habitat extended farther offshore and north than
survey effort. More optimal allocation of the survey effort could
have allowed those areas to be sampled without increasing total
survey time. However, it must be recognized that the model pre-
dicts the potential habitat for very patchily distributed sardine
and that not all the predicted habitat will contain sardine. In
fact, from our definition of habitat, it follows that good and
optimal habitats contain an average of 42% of all negative samples.

Mapping sardine habitat monthly from 1998 to 2009 illustrates
cyclic seasonal evolution (Figure 7). From January through April,
the habitat is offshore and south of Oregon. Starting in April, the
habitat begins to move north while compressing towards the coast.
This pattern continues throughout summer, creating a narrow

band of habitat along the coast from Oregon to BC. In July and
August, sardine habitat is generally compressed along the coast
by the warm, oligotrophic water offshore and to the south. In
early autumn, sardine habitat starts to expand and, from
October through November, it begins to recede towards the
south, retreating first from the coast off BC. The offshore–south-
ward movement continues through winter, and reaches its
southern extreme during February and March.

The model predictions of potential sardine habitat were com-
pared with sardine landings in Oregon, Washington, and southern
Vancouver Island (Figure 8). The cross-spectra of potential habi-
tats and the corresponding landings show the greatest coherence
around a 12-month period, as expected from the largely repeating
seasonal pattern. However, potential sardine habitat precedes the
catches, more so to the north. Generally, sardine catches off
Oregon and Washington begin within the same month and
precede the BC landings by �1 month, reflecting the northward
movement of sardine. Fishing off Washington and Oregon ends
before the sardine habitat retreats from those areas, but fishing
continues for another month or two off BC, suggesting that the
fish do not return south via the same coastal route. This hypothesis
is supported by the model predictions, which show that the poten-
tial habitat is typically located offshore during the southward
recessions (Figure 7).

The model predictions were also compared with the sizes and
abundances of sardine aged 1 year and more collected weekly in
surface trawls during spring and summer near the Columbia
River mouth (Figure 9). Those catches provided information on
the arrival of adult sardine migrating from the south. Catches of
large sardine are made at or shortly after the development of

Table 1. Explanatory and predictive areas under the ROC curve (AUC) values, calculated with the best model derived with and without
the predicted dataset, respectively.

AUC 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Mean

Explanatory 0.92 0.78 0.83 0.83 0.76 0.87 0.89 0.85 0.69 0.84 0.91 0.78 0.83
Predictive 0.88 0.67 0.81 0.79 0.72 0.85 0.87 0.82 0.62 0.83 0.88 0.74 0.79

All AUC values had p , 0.001.

Figure 4. The partial effects for SST, ln(CHL), and GRAD for the best GAM. The SST vs. ln(CHL) contour (a) was conditioned on GRAD ¼
0.0175 m grid_spacing21 (vertical line in b) and CSI ¼ 30 min. The GRAD vs. ln(CHL) contour (b) was conditioned on SST ¼ 13.28C (vertical
line in a) and CSI ¼ 30 min. The areas without contours indicate no data. The y-axis labels are linear.
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sardine habitat in this area. Before this, the few sardine caught in
the area were considerably smaller and were presumably non-
migrating. Moreover, the biomass density of sardine increases
from the initial detection and peaks within 2–4 weeks. A
notable exception to this general trend was in spring 2005, when
there were large catches of adult sardine in the absence of suitable
habitat. However, those fish were considerably smaller than the
large migrating sardine and were likely from the very strong year
class of 2003, recruited and detected in the area in 2004 as age-0
fish (not shown).

Discussion
During spring, sardine spawn in waters with particular non-linear
combinations of SST, ln(CHL), and GRAD [Equation (1)].
Nevertheless, the values of SST and CHL associated with sardine
presence in this study are similar to those described previously
using both smaller (Checkley et al., 2000; Reiss et al., 2008) and
more comprehensive (Weber and McClatchie, 2010) sets of data
collected from ship- and satellite-based sensors. For example, con-
centrations of sardine eggs have been observed previously associ-
ated with SST values of 12–168C (Checkley et al., 2000; Lynn,
2003; Jacobson et al., 2005; Reiss et al., 2008). Off Oregon,
where sardine spawn later in the year, most of the spawning
biomass appears to be found where SST is between 14 and 168C
(Emmett et al., 2005). The model presented here, based on
sardine egg presence over a 12-year period, demonstrates that
spawning sardine are found in water where the SST lies between
11 and 168C, but mainly between 13 and 148C.

Sardine are opportunistic feeders, utilizing phytoplankton,
microzooplankton, and macrozooplankton (Emmett et al.,
2005), with zooplankton comprising most of their carbon intake

(Espinoza et al., 2009). Within the temperature range 12–14.58C
(cf. Figure 3), the model suggests that sardine most often reside
in water with CHL values between 0.3 and 1 mg m23, similar to
the results of Reiss et al. (2008). The model also indicates that
sardine avoid areas with high CHL and low SST, indicative of
freshly upwelled waters, but can occupy areas with moderate
CHL up to .10 mg m23 provided SST is .138C. The
medium-to-low CHL and mild temperature ranges encountered
for Pacific sardine eggs may be indicative of curl-driven upwelling
areas, with large zooplankton biomasses exerting predation
pressure on the phytoplankton community (Rykaczewski and
Checkley, 2008). Such conditions result in smaller phyto- and zoo-
plankton than coastal upwelling regions. Also, because of the lower
turbulence in relation to the coastal upwelling areas, curl-driven
upwelling regions favour the feeding of sardine larvae (Bakun
and Parrish, 1982), and probably adults (Rykaczewski and
Checkley, 2008), promoting the retention of eggs and larvae.
Therefore, the apparent preference for these mid-range SST
values, which are well within the physiological limits for sardine
(Martı́nez-Porchas et al., 2009), could be related not only to the
potentially poor development of sardine larvae at temperatures
,138C (Lasker, 1964), but also to there being inadequate food
for adults in freshly upwelled, cooler, coastal waters
(Rykaczewski and Checkley, 2008) and warmer, oligotrophic,
oceanic waters (Checkley et al., 2000).

A statistically significant relationship between sardine presence
and GRAD is described here and provides a remotely sensed vari-
able that improves the predictions made within the space created
by SST and CHL, and possibly constrains the offshore extent of
sardine habitat. The habitat model suggests an increase in the
probability of a positive sardine encounter when GRAD values
are high, indicative of high geostrophic flow, as expected in mesos-
cale oceanic and coastal eddies (Mantyla et al., 2008). These struc-
tures could play an important role in the recruitment of pelagic
larvae to adult populations (Loggerwell and Smith, 2001).

The model fit and predictions were not influenced by the size of
the SSB. This is because, for the biomass levels considered here,
0.5–1.3 million tonnes (Hill et al., 2009), the area of distribution
is largely independent of the biomass (cf. Figure 6 in Barange et al.,
2009). Consequently, habitat is the main driver of the large-scale
spatial distribution of sardine, and the model predicts the distri-
bution of spawning sardine in the sampling region accurately.
Furthermore, the model predicts the presence of spring spawning
habitat to the south in coastal waters off Baja California (Figure 7).
Baumgartner et al. (2008) sampled spawning sardine in that area
which were believed to belong to the northern stock.

It was further assumed that the habitat model predicts the
potential habitat for non-spawning adult sardine, a hypothesis
largely supported by comparing the model predictions with inde-
pendent information from the fishery in the northeast Pacific and
trawl surveys in proximity to the Columbia River mouth, where
large catches during summer and the absence of sardine during
the rest of the year were accurately represented by the monthly
habitat predictions. The analysis of monthly predictions show
that sardine habitat recedes south in the winter, supporting his-
torical observations that, in general, sardine migrating from the
south in spring do not overwinter in the northeast Pacific
(Ware, 1999; Schweigert and McFarlane, 2001). However,
smaller sardine including age-0 fish were sampled occasionally,
most likely as a consequence of local recruitment events
(Emmett et al., 2005). It is unlikely that these smaller fish migrated

Figure 5. Receiver operating characteristic (ROC) curve for the best
model. The proportion of false positives (negative samples classified
as positive) are indexed to the x-axis and the proportion of true
positives (positive samples classified as positive) to the y-axis for
sequential levels of the fitted probability (the values indicated along
the ROC curve). The four habitat classes are: optimal, highest
probabilities, including 80% of positive samples; good, including 10%
of the total positive samples not included in the optimal habitat;
bad, including 9% of the total positive samples not included in the
optimal and good habitat; and unsuitable, including ,1% of the
total positive samples not included in the other classes.
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from the southern spawning grounds (Clark and Janssen, 1945),
but instead were likely spawned and remained locally throughout
the year. Similar observations have been made in Canadian waters
(McFarlane and Beamish, 2001).

The model provides an accurate prediction of sardine habitat
and the species’ seasonal dynamics. The significant statistical

relationships encountered using a small set of environmental vari-
ables summarize ecological mechanisms without requiring their
explicit definition (Whittaker et al., 1973). Also, the model
shows that a non-linear multivariate combination of environment
variables defines species habitat better than a range of environ-
mental variables analysed in isolation or in linear combination.

Figure 6. Potential sardine habitat overlaid with the presence (red) and absence (blue) of egg data sampled with a CUFES during spring
surveys. Each habitat prediction map was constructed without including in the fitted model data from the respective year.
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This fact reinforces the idea that ecological mechanisms are intrin-
sically non-linear (Hsieh et al., 2005), a characteristic that applies
to both various environment-to-species relationships and their
combinations.

The procedure applied here has potential for application to
many other migratory epipelagic species in the CC and other
marine ecosystems. As demonstrated, data from a variety of
large-scale surveys (e.g. Barange et al., 2005; this paper) or

fisheries landings (e.g. Solanki et al., 2010), or both, can be
combined with remotely sensed environmental information to
construct potential habitat models with temporal and spatial
resolutions of approximately days and tens of kilometres. The
benefits for such predictive models are many, including optimiz-
ing survey-sampling effort, interpreting survey results in the
context of potential habitat, predicting or explaining fishing
effort, understanding seasonal migrations and trophic-level

Figure 7. Monthly average sardine habitat, 1998–2009, predicted from the selected GAM [Equation (1)].
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Figure 8. Time-series of potential sardine habitat (grey) and commercial sardine landings (bars) in Oregon, Washington, and south of
Vancouver Island. The sardine habitat was evaluated as the proportion of the respective fishing area (polygons centred at 12580.81′W
45842.12′N, 124859.69′W 47819.77′N, and 126849.91′W 49823.55′N, respectively) containing good and optimal habitat.

Figure 9. Evolution of adult sardine lengths (circles) and mean biomass densities (local smoother line) inferred from surface trawl catches off
the mouth of the Columbia River (124819.14′W 46811.43′N). The arrows indicate the estimated time of arrival of potential sardine habitat.
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interactions, and predicting changes in habitat location and
habitat use under scenarios of climate change. If the model
fails to predict distributions of sardine, perturbations of the
current oceanographic and biological processes summarized by
the non-linear combination of SST, ln(CHL), and GRAD may
be indicated. Therefore, the accuracy of model predictions
may also serve as an indicator of changes in the state of ecosys-
tem, or so-called regime shifts.

This analysis has provided, for the first time, the environmental
basis behind the migration cycle of the northern stock of Pacific
sardine reported by Clark and Janssen (1945). The routes taken
during the northward and southward migrations appear to differ
in their proximity to the coast. During late autumn, the retreat
of sardine habitat and the lack of significant landings off Oregon
and Washington suggest southward migration mainly offshore,
even to the west of 1308W. In contrast, during northward
migration, compression of northern cooler waters into the coast
gives sardine little option other than to migrate within a coastal
filament of habitat. These findings unify an assortment of spatially
and temporally scattered observations of sardine, such as spring
spawning in the southern California Bight and offshore, the
summer fishery of large sardine in the northeast Pacific, the
appearance of larger, fatter sardine in central (Clark, 1936) and
southern California (Higgins, 1926) a few months after their dis-
appearance from northern waters, and finally their re-aggregation
off southern California in spring. This evolution appears to be
related to that of the Transition Zone Chlorophyll Front (TZCF;
Polovina et al., 2001), perhaps resulting from the same mesoscale
processes. The TZCF spans the entire northern Pacific Ocean
(Bograd et al., 2004), but runs almost parallel to the coast along
the eastern Pacific margin (Polovina et al., 2001). The seasonality
of the TZCF appears to regulate the northward and offshore limits
of sardine habitat (cf. Figure 2 in Polovina et al., 2001).

The habitat model, including time-invariant relationships and
excluding temporal and spatial explanatory variables, consist-
ently explained a large proportion of the variability in egg
data and predicted the spatio-temporal evolution of the
sardine stock for more than a decade. The model, which is
based solely on remotely sensed information, can be used to
map, immediately before a survey, the potential habitat of
spawning and non-spawning adult sardine from the northern
stock. The predictions of potential sardine habitat reflect the
most likely area of sardine presence and, although the pro-
portion of the habitat utilized by sardine varies from survey
to survey as a consequence of their aggregating behaviour, sub-
stantial gains in survey efficiencies were shown. Oceanographic
changes within the environmental window (7–14 d) of each
composite satellite image, especially offshore, did not show sig-
nificant discrepancies with in situ measurements, suggesting that
small spatial- and temporal-scale variability has a negligible
effect on short-term forecasting. Therefore, potential sardine
habitat can be predicted with the latest available satellite data
for planning CUFES, acoustic, and trawl surveys with gains as
high as half the duration of past surveys. These saved resources
can be reallocated to sample areas of potential sardine habitat
better, perhaps reducing sampling bias attributable to incom-
plete sampling of the entire population. Moreover, the sampling
variance (Aglen, 1983), which is often the greatest source of
random error in acoustic surveys (Demer, 2004), would be
reduced. The model predictions suggest that acoustic-trawl
surveys conducted during summer may be more efficient than

similar surveys conducted in spring, because the offshore
limits of potential sardine habitat are well marked and close
to shore. Also, the nearshore operations of the fishing fleet
might create synergies for the collection of biological samples.
Moreover, the longer periods of daylight would provide
more acoustic sampling, which is ineffective when sardine
migrate to the surface at night, and hence a reduction in
sampling variance.

Supplementary data
Supplementary data are available at the ICESJMS online version of
the manuscript.
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